A detailed overview of OpenSCL from EBE Computing

Why OpenSCL?

» Network servers have become increasingly powerful over the years to the point where they now rival the
performance of mainframe systems

* Network servers provide freedom of choice with regard to vendors and the technology they supply

* Network servers providing the same throughput as mainframes tend to be more cost-effective

» The temptation to move from mainframes is therefore very great

» However, there is a reluctance to do so because the sophistication, resilience and integrity of mainframe systems
appear to be lacking on network servers

» Conversion costs appear prohibitive

» There is uncertainty with regard to the choice of Operating System to migrate to

» The experience of users who have already moved to network servers appear to corroborate these fears

What is OpenSCL?

* OpenSCL is a brand-new operating environment for OPEN Systems, including Windows-, Linux- and Unix-based
servers

* OpenSCL complements the host operating system and works seamlessly with it

* OpenSCL is also a tool that will greatly ease migration to an OPEN Systems environment and provide added
value on the target platform

* OpenSCL consists of -

* SCL, a brand-new (scripting) language for Open Systems that builds on the well-established, tried and tested
standards with which enterprise users are so familiar

* Developer, an interactive facility for developing and testing programs written in any language and provides a
common look across the enterprise

* Enterprise, a sophisticated Batch Scheduler for running work in unattended mode across the Enterprise

* Editor, a comprehensive editor geared for rapid development of programs and files
What does OpenSCL do?

* OpenSCL provides a common English-like computer language called System Control Language or SCL

* OpenSCL takes any SCL and translates it to an ANSI-standard C program

» The compiled C program interacts with the OpenSCL run time system on the target computer, giving the full SCL
functionality needed by the C program

» The run time system is bundled with OpenSCL Developer and Enterprise

The diagrams on the following pages show OpenSCL configurations.

Current Development Architecture p

¢

Current M/F User Current M/F User

Current MF User

iWith the current system, development takes place
-on the mainframe, with current users still accessing it.

' Development places a heavy toll on resources and
will affect performance.

OpenSCL Architecture

Optional
Cannection

Interface Server running OpenSCL
Acting as Mainframe and Handling Development Resources

Curret MIF sers

Developer

Current MIF Lsers

N

Current M/F Users This shows the new architecture, where the
mainframe is run on a PC Server and all
development and the testing "burden” is passed to the server.
Developed work can be tested at any time on the
mainframe as well.

OpensSCL
{(future)

VWINDOWS
VM E O5/98/NT/ i OS390
MNME

ICL IBM I
MAINFRAME PRR R IBNFRERNIE MAINFRAME

What are the benefits?
* For developers, OpenSCL provides:

* A low risk development capability

* Major resource savings in terms of hardware

High functionality and performance

A highly user-friendly interface with a fast, intuitive development environment
Rapid application completion times — complete system testing is facilitated

A reduced need to know complex technology

* A common way to run the same code across the enterprise

* For Users:

* OpenSCL provides a single interface in heterogeneous environments

* An enhanced user interface using run time templates eliminates most errors

* Multiple Operating Systems can be accessed from a single program

* Machine resources on the client are therefore minimised

* No changes are necessary in the user environment - users retain the same interface, eliminating the need for
retraining

* For Management:

* Your investment in SCL is protected - the aim of OpenSCL is to allow the use of existing SCL across platforms with
no manual conversion effort whatsoever
* Production and development workloads can be split across platforms

* Production can run, e.g. on Windows Server or AIX
» Development can run, e.g. Windows 98
* The processing power of ALL computers on the network can be utilized

* The freedom to choose the best platform
* “Specialist” staff per operating system are no longer an issue - management cannot therefore be “held to ransom”

Who will benefit?

» Enterprise users who are already using
* Windows 95/98/NT/2000/XP
e Linux
e AIX
» All mainframe users who are moving to the world of OPEN Systems

What is needed to use OpenSCL?

* The OpenSCL product will provide you with all you require

» If you are moving SCL from one Operating System to another, a means of transferring the SCL source code, such
as compatible tapes or discs, or a file transfer facility, will be necessary

* A“C” compiler, freely available on the Internet, is required

* Under Windows, the C compiler in DevStudio is preferred

What enhancements are planned?

» Depending on demand, additional target computer platforms will be included, for example, MVS
» Conversion software enabling conversion from other platforms will be supplied, for example, from MVS

Visual OpenSCL
This is the flagship application that is a complete development environment.
It consists of the following components:

* MAC Sessions
» Filestore view

» SCL Editor

* Applications view
* Master Oper

MAC Session

Allows a user to login to a secure user. This is the interface that replaces the old green screen that users were used to.
The interface:

* Allows remote sessions

» Allows concurrent session access

* Manages remote connections

* Provides secure access

» Has powerful features but yet is easy to use
» Shell commands from the MAC are possible

See the figure below.

_ YWisualOpenSCL - [MACTERMZ] A
"] Fle Edit View Session Commands indow Help =
00O xE = |« =0 BOI TN

| & x

s e e

| Master Doer | Editor | Sessions FileStore | Acolications

D3936 - o : CONY _ EBE - WINDOWS NT MACTERM2 |

For Help, press F1 |R 2412 L 3369 | |NUM | [Col 7 [Ln 173°] 4

Filestore View

A visual mechanism for interacting with files. It has the following features:
* Is modelled after Windows explorer
* Makes accessing and manipulating files easier

* Has context sensitive menus

See the figure below.

3 C C 3 3 e Ti r~ 1 Yol Ty 30 30 .
(Y ST e] R E sy TN E NG e St sr TR L TN Wl it ER N ST MU R M AS O] Sl el e J JJ
‘ File Edit Wew Connection Window Help - | 8 X

B | %o - i

ERL=RuR= A1,

“
=
[w]}
m | =& User COMY On Machine d: File: Mamne Gen Murmber | Tvpe | Size | Last Madified
E 2] cobolsourcelibrary(1) ClmacwrITER 20020733 95531 2005/12/09 18:32
<1 2] cobolsources(1) [l PrROCOWEKD 21 7121 2005/12/09 18:28
= . TR Clprocqwkn 20 5635 20051208 17:27
& 2] sourceliorary(20020730) | B macwRITER 20020732 95042 Z005/12/08 15:12
= 3 userobiectnodes ElrunRiscTests z 3749 Z00S/12/07 00:13
| o [PROCASPRONCDEHANDLER. 20020731 51256 2005/12/05 13:32
5 Djnbspacefile 1 0 2005012704 14:13
i [) CCURECORDIOBPROGRESS 200207534 FEEE ZO0S(12/04 13133
" () PROCE740MIMSMEBAPPEND 1 4403 2005(12/04 11:36
= [) CCURENUMBERSYSTEMPROGC 200207532 25375 20051027 15:06
o ClrunfiscTests 1 3754 2005/10/19 11:38
=] PROGAMALYZER 20020737 141379 Z005/08(30 15:35
.:.E' D Flowcharts zip 20671 2005/07[04 16:54
I () CCLDRAWFLOWCHART 20020733 49635 2005/07/04 16:02
E% () CCRSTAFFSENIORLOSSFC 1 3543 Z00S(07/04 14:08
— [s¥swRITER 20020739 100290 Z005/06{23 14:07
() CoUMULTIFILEBACKUP 20020731 46791 2005/06/23 1407
[2) syswRITER 20020740 100290 2005/06{25 11:39
[l cCUMFBUERRORHANDLER 20020751 1085 2005/06/22 15:24
D jobspacefile 5 23918 200%/08/22 15123
() CoUMULTIFILEBACKLP 20020730 46227 2005/06/09 20:23
Q PROGAMALYZER 20020736 141288 2005/06/09 20:14

D3936 - d: : CONY . EBE : wWINDOWS_NT |

For Help, press F1l FE 2412 L 3369 NUM Col 7 Ln 1737

SCL Editor and Compiler
Allows a user to develop new SCL procedures using the following features:

» Auto-complete facility for syntax and commands

Syntax colouring specific to SCL

Modelled after mainstream Windows editors such as Editplus
Compile button and error messages

Bookmarking

See the figure below.

r‘ ey e (e Gl S T ko TR O A TN SR dgjﬁ
=

: File Edit Format Miew Connection Search Document Commands Window Help - O X
) DeE O & B X ol Wae A4 LR BOE T
B[-/END_RTN:/|{(cx/CCU_TRUNC SF(/,q: [~
= i/B8/,
= q,
o p-1,
E% r/CCU_TRUNC_SF (fcocuTruncapWorkRec 1=/, n couTruncipllorkRec @ =
A § oR T o n couTrunciplWlorkRec = PARAM
= n p.+4d, e v ool
= k, n split the line
E i/s n -’
E p.l, r/ CCU_TRUNC_S5P(/1if { zetimp(mark) == 0] 77/ n “[spaces]if [setjuwp(mark) == 0)°
o B i) i =
= p.l, r/ CCU_TRIMC_SP(/{"//f 1 [spaces] goto truncatelpaces
5 p.l, rf CCU_TRUNC_SFP (S goto Lruncatelpacess/s/s n -
o— i/°7 n-
D p.l, r/ CCU_TRUNC SP(/}°/// Bt
= pr.1l, n CCU _TEUNC 3P (PARAM,) ; PARAM := SUBITE(PARAM, 0, |
% d/CCU_TRUNC 5P/, n [spaces] (PARAM, X)) ; PARAM := JUB3TE(PARLM 0,.X)
E . ASUBSTE(/ . n SUBSTE (PARLM 0,X) |4
= p.+7, n PARAM,D,X) B |
il =) n PARAM := 0O,X)
i/truncatedRec/, n PARAM := couTruncipWorkRecO, X)
p.e, n n PARAM := couTruncipWorkRec
q
]
|

MACWRITER[Z0020733] INSERTPERFORMINMWEDIT(Z] | #[54] - Read Only | PROCOWED[Z0] - Read Only | #+[55] - Read Only | PROCEWKO(EZT] - Read Only | #==[56) - Read Only |

For Help, press F1 B 2412 L 3369 HUN | col 58 Ln 70 3z CEE

OpenSCL Technical Overview

Files
OpenSCL supports the following file types:

* Line Sequential

* Record Sequential

* Indexed Sequential

* Relative

» All files can be fixed or variable length

* These are Microfocus file types and map to their VME equivalents
* Files are assigned dynamically at run time

* No file placement details are recorded in programs

* This provides device-independence to the program

* Files can be on disc or “tape”

The user is oblivious to the format of these files even though Microfocus files have proprietary headers that their VME
counterparts do not have. OpenSCL handles these by interfacing with the Microfocus COBOL external file handler.

File Descriptions
Each file has a unique description. This description records its:

* Type (sequential, indexed, etc.)
e Minimum record size

e Maximum record size

* Key position

* Key length

e« ASCIl or EBCDIC attribute

* Block size (future)
Libraries

Libraries provide a container for files with similar file descriptions. Libraries, as a whole, can be:

Copied to other libraries
Copied to tape

Deleted

Tidied

Selected files can be copied and or tidied
Libraries can be on disc or “tape”

Generation numbers

* Generation numbers are 9-digit file qualifiers

 All files and libraries can have up to 999-999-999 unique instances

* Generations numbers are automatically appended to file names

* Generation numbers are numbered sequentially but can be specified by the user

* New files start at generation 1 unless changed by the user

* Subsequent files are incremented by 1 unless changed by the user

* The latest generation of a file is alway assigned unless changed by the user.

* Generation numbers can be quote absolutely (by number) or relatively (using + and -)

Groups and Sub-groups
* Groups and Sub-groups provide a convenient way of physically grouping files for the same user

* E.g., for a payroll user groups can be created for salaries and wages
* This allows for the same named files to exist for the user but are qualified by the group

Tax sub-groups can be created for the salaries and wages groups
Commands exist for bulk manipulation of groups

E.g., groups and sub-groups can contain files and libraries

These can be tidied by executing one command

Compiled SCL, including functions

The OpenSCL system provides an SCL compiler to:

Compile frequently used SCL into procedures

Provide parameters for different invocations of the same procedure, e.g., daily, weekly or monthly
Provide speedy execution of SCL

Compile common routines into functions

Interpreted SCL
Interpreted SCL is allowed for:

* Interactive use

“once-off” SCL requiring no parameters

SCL can be executed from strings or from files

This is more typically used to start production SCL procedures

User object nodes
» User object nodes are (typically):
» “Control” files used by SCL procedures

e Contain small amounts of data
e Are normal files

* Do not have generations
e Can be permanent or temporary
* Pass information across procedures in different jobs

Full journal (logging) functionality

* Every SCL statement issued in a MAC session is logged to a file called a journal

* All mouse clicks which affect the users environment (e.g., file deletions) are logged
* All SCL statements executed from files arelogged

» All SCL calls in Batch SCL are logged

* Displays from COBOL programs are logged

Private journal and spool libraries

* All journals are recorded in libraries

* The default location is a system user location

* User libraries may be created for sensitive users, e.g., payroll

» User libraries are automatically assigned

* Spool libraries are used for temporary (print) files which are created, listed and then deleted
* These are treated as per journal libraries

The job space

* The job space is the “working-storage” for the OpenSCL system

* |t provides for the storage of strings, booleans, integers, etc. both inside procedures
* The job space outside procedures is available to any executing SCL

* Procedures can therefore adapt themselves to their environment

* OpenSCL has no practical limit to the size of the jobspace

The line Editor (ED)
* A full implementation of the VME line Editor is provided. Some of the facilities include:

* Transcribing text

* Deleting text

* Inserting new text

* Replacing text

* Inserting new lines and spaces

» Controlling an omnibus character

» Controlling a visible space character
* Holding a record for re-editing

* Checking

* Changing the source of editing instructions
e Quitting an edit instruction

* Merging a different old file

* Commenting of edit instructions

Common display utilities
All the common display utilities are provided, e.g.

* DisplayUserDetails

» DisplayLibraryDetails

* DisplayGroupDetails

* DisplayFileDetails

* DisplayTapeLibraryDetails

* DisplayUserObjectDetails, etc.

SCL file 10
OpenSCL provides for:

* Opening files

* Reading serial files

Amending files

Updating individual records

Identifying records by string matching
Reading and amending random access files
Pseudo-random access to serial files
Deleting records

in both interpreted and compiled SCL.

* ALL Microfocus file types are supported
 Certain restrictions within the Microfocus run-time apply

Tape handling

* Production jobs typically back-up intermediate files to tape

* These are not “archives” of multiple gigabytes of data

* These backups can be restored without any operator control

* OpenSCL provides this functionality by writing these files to a “tape” which is a disc partition

* Production SCL therefore remains unchanged yet provides the same functionality

* ALL intermediate files can be backed to physical tapes in one go since all these reside on one disc
 All tape functionality is provided, e.g.

* Introducing tapes
* Tape categories

» Creating tape files, etc.
SCL Database 1/0

* OpenSCL supports Dbase-type and Foxpro databases in SCL
* |t uses the royalty-free CodeBase IV database engine and provides facilities to:

» Create, open and close database files
* Read, write, update and delete, etc. database records

* Provides very fast access to these database types
ASCIl and EBCDIC

* OpenSCL works natively in EBCDIC

* Support for ASCII is provided

* This allows for the reading and writing of both ASCII & EBCDIC files

* The file is simply “described” as ASCII or EBCDIC and OpenSCL processes the file accordingly
* Support exists for passing parameters to COBOL programs in either EBCDIC or ASCII mode

Bus Utilities
» The following, fully-functional, basic utilities are provided:

* AppendRecords
CopyRecords
ListRecords
MatchRecords
DuplicateBlocks

* These support the fselect and rselect parameters

Macros with textual substitution

e This is an old VME/B type of “procedure”, much like .bat files
* Limited support is provided for these in OpenSCL

System Control Language (SCL)

SCL is the basis of OpenSCL. It stands for System Control Language and is used to write SCL procedures. System
commands are written in SCL and users are able to write their own as well.

* Lexical elements are the building blocks of the SCL language and are equivalent to the words and punctuation in
English. Some definitions:

* alien-data -> Records delimited by lines starting with ---- and ending with ++++
* alien-mode-definer -> Identifier starting with SPD

* any-graphic-character -> The EBCDIC Codeset

* bip -> built-in procedures — see later

booHiteral - » TRLE
FALSE

comment - > @ I* any-graphic-character except [[@]HWE

eaeTe M

delimiter-»

end-of-line
comment
| alien-data

digit-> | 0
1

g

end-oiile - » See section D.2
end-of-ine - > See section D.2

identifiar - > letter { * {

int-literal - > digit™

letter
{digif}

b

et d

kenaword - > identifier

letter-» A,
B
[
Pl
non-delimiter - » identifier
kennword
int-literal
boolliteral
string-iteral

parameter-literal
parameter-superliteral-element

parameteriteral - »

parenthetic-item } - }

{1

any-graphic-characterexcept [[+ _+ /.) space @ /*=""end-ofHine]]

parameter-superliteral-element - »

&t

parenthetic-iterm
any-graphic-characterexcept [[+ _+/. 1 space & /*=""'end-otine &]]

parenthetic-item - »

&t

parenthetic-itern *
any-graphic-characterexcept[[+ _+/ &/ " space / end-ofHing]]

pragma- { RESCHEDULE }

MORESCHEDULE

scitext- > [* delimiter } { non-delimiter { delimiter *+ *}

stringrliteral - » f]{ * { any-graphic-character except [[O]] } } g

oo

any-graphic-character except [[O]) } } 0
oo

{

.

[[TRELE Y

aofuzl-parzreferaiue - > X pressicn
pararreterlfen!
WAL sirng o mera el
SWAL supersfing-ax phassion
{ |: pararretersy perliferalel emenf] "B
WAL strng-cparaned }

Heniifier-subsenpf

assignrent- > idenfifier ' =EpreEs N
SUBS TH ifentifier, nf-ox phession, in e pression)

ook - = BEGIN siafements { } EMD
enol-cf- ine

[LEETRTES

bool-expression - > beoboparand
booboparand | AMD Boolopermnd
QR
MEQ
Infoperand rebfionalopersfor iboperand
sfringroperand [relfionalcperafor | stong-cpreranc
INMCLUDES
STARTSWITH
EMDSWITH

Beol-opemndg - > Menfifier

ek literal
function-call
dlentifier subscript
NOT koo lopemnd
(buclexpression)

Fusf-ln-procecurzcall - > Bip [[{ [acfualpammefervaue 1 10]
call - > [EMTER } { fulkferngfate-call }

SWSCALL simplefermpiic-vall
noferplizic-call
coRGiicRal - > IF ' corcdficnal bodhy Fl
LIMLESS
corcficnal body - > boclexpression THEN staferrents ELSE staterrents
ELSF conditicnzl-bocly

cyle - > [FOF! Henﬁﬂér] ~ [FROM Ini-express kn WHILE bociex pression
o UMTIL

By

DO stofereenfs | RERPEAT
and-of-line
expression - > Inf-expressicn ’
boolex pression
STIRG-EXPRESEIGN

SUReIs NG -eXp ress n

exf-pro-declaeliion - = EAT PROC idenfiier [(peorsl]
1S [exf-proc-pararefers | INT
BOOL
STRING
SUPERSTRIMNG
alien-rrocle-definer

exf-pro-parareter - = pararrefer-rode ’ keyword | =expressicn
alien rrode-definer =ML

forralpaiarneter - = [pararreter-rode] [Reyword)] deniifler [:=ex pressicn]
forrral paarneters - = ([forralpsamefer)
fullderplafe-call - > idenifier[([[feyword=][ae ualpas refervalie] 1]

fupcticn call - = | fullferrpkiocal
shrplefernplate-call
no-ferrplate-nall
FBwif-in-procedure-call

IOE BT

Inf-expression - > Inf-crerand™

PO

AND

MEC

Inf-opemnd - > Kenfifier
ni-Iteral
funciicn-cal
Henfifier subsonpt
(Intexprassion)

+7 infcrem g

COURT iefenifier
LEMNGETH sfng-operand
BOLUND ifenfifier

Jrfr-co Rt L oG rahn - = statetrents “ 1 end-of-fie
alenziz
proceduredec/ze i
furg - > G0TO B kel
Izfel- > Eenifier
rrach-focly - = MACBEGIN staferments N 1T MACEND
endofline

rackdeclziion - > WMAZRO dentifier [synonyrs-and-version)

15 [Frecroefomrel-mararetfes) INT
ROOL endof-line rroe - oy
STRING
SUPERETRING

rrach-forral-parsrefer - >
[pe e ter rrclel] kzyacrd)] wracro-sdentifier [=ex pressin)
rachyokentfier - > Hidentfier
no-ferplate-nal - = entifier [lex pression® 1h]
paniErc-condiionz) - > WHENEVER whenevekoondfion [THEN siaforments F1)

rarareterrode - > INT

BOOL

STRING
SUPERSTRING
LITERAL
SUPERLITERAL
REF JIMT

RER JBOOL
REF IMT

REF B2nOL

REF STRING
REF SUPERSTRING
RESPOMSE

FLyTe

proc-hody - » FROCBEGIM statements { : } FPROCEMD
end-of-line
BEGIM staterments { : } EMD
end-of-line
procedure-declaration - > PROC identifier [synonyms-and-version]
1S [formalparameters) INT end-of-line proc-body
BOOL
STRING
SUPERSTRING

relational-operator - > MNE

return-staterment - > RETURN [expression]

rowe-cleclaration - > (intexpression) INT {icentifier}
BOOL

scalar-or-superstring-declaration - >

INT {identifier |:{ = } expression} * }
IS
BOOL

STRIMNG [fint-expression)] Mote that during repetition = or IS
SUPERTSRING [[lintexpression] [intexprassion])] rust not be interchanged

simple-template-call - » identifier [([actual-parametervaluel®]

statement-> [label] [assignment
block
call
conditional
cycle
ext-proc-declaration
ext-variable-declaration
jurmp
panoramic-conditional
return-staternent
row-declaration

L scalaror-supersting-declaration |

statements - > { staterment® { : } }
end-of-line

string-expression - » stting-operand® [+

AFTER
BEFORE
AND

CR

MEQ

* OpenSCL supports ALL the VME SCL language lexical elements and language constructs

e SCL is a fully functional programming language
» SCL uses English type commands
* OpenSCL SCL provides:

» panoramic conditionals (WHENEVER)
e easy string manipulation

* result checking

* strings and Superstrings

* ints and rows of ints

* bools and rows of bools

* if, goto, while, repeat, whenever, etc

* all built-in procedures

* Embedded C code in procedures

Built-in procedures

BIN
CHARTOINT
CLOCK
DIGITS

FILL

FIND

HEX
HEXTOCHAR
INDEX
NUMERIC
STATUS

o STINT
« SUBSTR

OpenSCL Enterprise
e Batch Scheduler
BATCH

Once an SCL procedure has been developed and tested in an interactive MAC session it can be submitted to the Job
Scheduler to be run in unattended mode.

» Jobs are submitted to queues with varying priorities.

* The execution of these jobs is controlled by setting concurrencies, for example the scheduler can be set to run
only two jobs at any one time.

» Profiles exist per job so that the execution of jobs can be controlled on a group basis.

» These jobs are not scheduled on a processor level.

* The job journal records the results of the job.

Multiple queues

* Priorities amongst queues

Priorities within queues

Queues can be held, expressed, released, etc

Entries in queues can be held, released, expressed
Executing jobs can be suspended, activated, abandoned, etc
Concurrencies can be set

Note that the Developer version of OpenSCL has the ability to run BATCH work. However the overall concurrency can
only be set to one.

Which calls are supported?

OpenSCL can invoke:

Any DLL

Any exe

Any SCL

C, C++, Visual Basic, etc

Any WIN API using C embedded in SCL
Microfocus Advanced Workbench ints and gnts
Microfocus NetExpress gnts and ints

COBOL programs are called from OpenSCL via the Microfocus COBOL runtime that is linked with it.

COBOL programs compiled into INT or GNT executables can be called by name from an SCL procedure.

Parameter passing. SCL variables can be passed to and from COBOL programs. Byte swapping is handled
seamlessly by OpenSCL. Calling conventions allowed on VME are also allowed under OpenSCL.

COBOL templates. OpenSCL allows a user to specify templates for calling COBOL programs. Specific default
values can be assigned to these calls.

Error trapping. Run-time exceptions that occur in the COBOL programs are trapped by the OpenSCL run-time and
reported to the user in the MAC session and in the job journal.

COBOL displays. Output that COBOL programs make to the screen is redirected to the MAC session as well as the
job journal.

Other facilities

* Reading of any files on homogeneous networks at source
* Integration with 3rd-party products

The EBE Computing SCL Generator

* The OpenSCL Generator with its unique features for generating highly efficient SCL and its associated run-time job
restart option ASPRO, is available on all platforms which support OpenSCL

	A detailed overview of OpenSCL from EBE Computing
	Why OpenSCL?
	• Network servers have become increasingly powerful over the years to the point where they now rival the performance of mainframe systems
	• Network servers provide freedom of choice with regard to vendors and the technology they supply
	• Network servers providing the same throughput as mainframes tend to be more cost-effective
	• The temptation to move from mainframes is therefore very great
	• However, there is a reluctance to do so because the sophistication, resilience and integrity of mainframe systems appear to be lacking on network servers
	• Conversion costs appear prohibitive
	• There is uncertainty with regard to the choice of Operating System to migrate to
	• The experience of users who have already moved to network servers appear to corroborate these fears

	What is OpenSCL?
	• OpenSCL is a brand-new operating environment for OPEN Systems, including Windows-, Linux- and Unix-based servers
	• OpenSCL complements the host operating system and works seamlessly with it
	• OpenSCL is also a tool that will greatly ease migration to an OPEN Systems environment and provide added value on the target platform
	• OpenSCL consists of -
	• SCL, a brand-new (scripting) language for Open Systems that builds on the well-established, tried and tested standards with which enterprise users are so familiar
	• Developer, an interactive facility for developing and testing programs written in any language and provides a common look across the enterprise
	• Enterprise, a sophisticated Batch Scheduler for running work in unattended mode across the Enterprise
	• Editor, a comprehensive editor geared for rapid development of programs and files

	What does OpenSCL do?
	• OpenSCL provides a common English-like computer language called System Control Language or SCL
	• OpenSCL takes any SCL and translates it to an ANSI-standard C program
	• The compiled C program interacts with the OpenSCL run time system on the target computer, giving the full SCL functionality needed by the C program
	• The run time system is bundled with OpenSCL Developer and Enterprise

	The diagrams on the following pages show OpenSCL configurations.
	
	 What are the benefits?
	• For developers, OpenSCL provides:
	• A low risk development capability
	• Major resource savings in terms of hardware
	• High functionality and performance
	• A highly user-friendly interface with a fast, intuitive development environment
	• Rapid application completion times – complete system testing is facilitated
	• A reduced need to know complex technology
	• A common way to run the same code across the enterprise

	• For Users:
	• OpenSCL provides a single interface in heterogeneous environments
	• An enhanced user interface using run time templates eliminates most errors
	• Multiple Operating Systems can be accessed from a single program
	• Machine resources on the client are therefore minimised
	• No changes are necessary in the user environment - users retain the same interface, eliminating the need for retraining

	• For Management:
	• Your investment in SCL is protected - the aim of OpenSCL is to allow the use of existing SCL across platforms with no manual conversion effort whatsoever
	• Production and development workloads can be split across platforms
	• Production can run, e.g. on Windows Server or AIX
	• Development can run, e.g. Windows 98
	• The processing power of ALL computers on the network can be utilized
	• The freedom to choose the best platform
	• “Specialist” staff per operating system are no longer an issue - management cannot therefore be “held to ransom”

	Who will benefit?
	• Enterprise users who are already using
	• Windows 95/98/NT/2000/XP
	• Linux
	• AIX

	• All mainframe users who are moving to the world of OPEN Systems

	What is needed to use OpenSCL?
	• The OpenSCL product will provide you with all you require
	• If you are moving SCL from one Operating System to another, a means of transferring the SCL source code, such as compatible tapes or discs, or a file transfer facility, will be necessary
	• A “C” compiler, freely available on the Internet, is required
	• Under Windows, the C compiler in DevStudio is preferred

	What enhancements are planned?
	• Depending on demand, additional target computer platforms will be included, for example, MVS
	• Conversion software enabling conversion from other platforms will be supplied, for example, from MVS

	 Visual OpenSCL
	This is the flagship application that is a complete development environment.
	It consists of the following components:
	• MAC Sessions
	• Filestore view
	• SCL Editor
	• Applications view
	• Master Oper
	• Allows remote sessions
	• Allows concurrent session access
	• Manages remote connections
	• Provides secure access
	• Has powerful features but yet is easy to use
	• Shell commands from the MAC are possible
	• Is modelled after Windows explorer
	• Makes accessing and manipulating files easier
	• Has context sensitive menus
	• Auto-complete facility for syntax and commands
	• Syntax colouring specific to SCL
	• Modelled after mainstream Windows editors such as Editplus
	• Compile button and error messages
	• Bookmarking

	 OpenSCL Technical Overview
	Files
	OpenSCL supports the following file types:
	• Line Sequential
	• Record Sequential
	• Indexed Sequential
	• Relative
	• All files can be fixed or variable length
	• These are Microfocus file types and map to their VME equivalents
	• Files are assigned dynamically at run time
	• No file placement details are recorded in programs
	• This provides device-independence to the program
	• Files can be on disc or “tape”

	File Descriptions
	Each file has a unique description. This description records its:
	• Type (sequential, indexed, etc.)
	• Minimum record size
	• Maximum record size
	• Key position
	• Key length
	• ASCII or EBCDIC attribute
	• Block size (future)

	Libraries
	Libraries provide a container for files with similar file descriptions. Libraries, as a whole, can be:
	• Copied to other libraries
	• Copied to tape
	• Deleted
	• Tidied
	Selected files can be copied and or tidied
	Libraries can be on disc or “tape”

	Generation numbers
	• Generation numbers are 9-digit file qualifiers
	• All files and libraries can have up to 999-999-999 unique instances
	• Generations numbers are automatically appended to file names
	• Generation numbers are numbered sequentially but can be specified by the user
	• New files start at generation 1 unless changed by the user
	• Subsequent files are incremented by 1 unless changed by the user
	• The latest generation of a file is alway assigned unless changed by the user.
	• Generation numbers can be quote absolutely (by number) or relatively (using + and -)

	Groups and Sub-groups
	• Groups and Sub-groups provide a convenient way of physically grouping files for the same user
	• E.g., for a payroll user groups can be created for salaries and wages
	• This allows for the same named files to exist for the user but are qualified by the group
	• Tax sub-groups can be created for the salaries and wages groups
	• Commands exist for bulk manipulation of groups
	• E.g., groups and sub-groups can contain files and libraries
	• These can be tidied by executing one command

	Compiled SCL, including functions
	The OpenSCL system provides an SCL compiler to:
	• Compile frequently used SCL into procedures
	• Provide parameters for different invocations of the same procedure, e.g., daily, weekly or monthly
	• Provide speedy execution of SCL
	• Compile common routines into functions

	Interpreted SCL
	Interpreted SCL is allowed for:
	• Interactive use
	• “once-off” SCL requiring no parameters
	• SCL can be executed from strings or from files
	• This is more typically used to start production SCL procedures

	User object nodes
	• User object nodes are (typically):
	• “Control” files used by SCL procedures
	• Contain small amounts of data
	• Are normal files
	• Do not have generations
	• Can be permanent or temporary
	• Pass information across procedures in different jobs

	Full journal (logging) functionality
	• Every SCL statement issued in a MAC session is logged to a file called a journal
	• All mouse clicks which affect the users environment (e.g., file deletions) are logged
	• All SCL statements executed from files arelogged
	• All SCL calls in Batch SCL are logged
	• Displays from COBOL programs are logged

	Private journal and spool libraries
	• All journals are recorded in libraries
	• The default location is a system user location
	• User libraries may be created for sensitive users, e.g., payroll
	• User libraries are automatically assigned
	• Spool libraries are used for temporary (print) files which are created, listed and then deleted
	• These are treated as per journal libraries

	The job space
	• The job space is the “working-storage” for the OpenSCL system
	• It provides for the storage of strings, booleans, integers, etc. both inside procedures
	• The job space outside procedures is available to any executing SCL
	• Procedures can therefore adapt themselves to their environment
	• OpenSCL has no practical limit to the size of the jobspace

	The line Editor (ED)
	• A full implementation of the VME line Editor is provided. Some of the facilities include:
	• Transcribing text
	• Deleting text
	• Inserting new text
	• Replacing text
	• Inserting new lines and spaces
	• Controlling an omnibus character
	• Controlling a visible space character
	• Holding a record for re-editing
	• Checking
	• Changing the source of editing instructions
	• Quitting an edit instruction
	• Merging a different old file
	• Commenting of edit instructions

	Common display utilities
	All the common display utilities are provided, e.g.
	• DisplayUserDetails
	• DisplayLibraryDetails
	• DisplayGroupDetails
	• DisplayFileDetails
	• DisplayTapeLibraryDetails
	• DisplayUserObjectDetails, etc.

	 SCL file I/O
	OpenSCL provides for:
	• Opening files
	• Reading serial files
	• Amending files
	• Updating individual records
	• Identifying records by string matching
	• Reading and amending random access files
	• Pseudo-random access to serial files
	• Deleting records
	in both interpreted and compiled SCL.

	• ALL Microfocus file types are supported
	• Certain restrictions within the Microfocus run-time apply

	Tape handling
	• Production jobs typically back-up intermediate files to tape
	• These are not “archives” of multiple gigabytes of data
	• These backups can be restored without any operator control
	• OpenSCL provides this functionality by writing these files to a “tape” which is a disc partition
	• Production SCL therefore remains unchanged yet provides the same functionality
	• ALL intermediate files can be backed to physical tapes in one go since all these reside on one disc
	• All tape functionality is provided, e.g.
	• Introducing tapes
	• Tape categories
	• Creating tape files, etc.

	SCL Database I/O
	• OpenSCL supports Dbase-type and Foxpro databases in SCL
	• It uses the royalty-free CodeBase IV database engine and provides facilities to:
	• Create, open and close database files
	• Read, write, update and delete, etc. database records

	• Provides very fast access to these database types

	ASCII and EBCDIC
	• OpenSCL works natively in EBCDIC
	• Support for ASCII is provided
	• This allows for the reading and writing of both ASCII & EBCDIC files
	• The file is simply “described” as ASCII or EBCDIC and OpenSCL processes the file accordingly
	• Support exists for passing parameters to COBOL programs in either EBCDIC or ASCII mode

	Bus Utilities
	• The following, fully-functional, basic utilities are provided:
	• AppendRecords
	• CopyRecords
	• ListRecords
	• MatchRecords
	• DuplicateBlocks

	• These support the fselect and rselect parameters

	Macros with textual substitution
	• This is an old VME/B type of “procedure”, much like .bat files
	• Limited support is provided for these in OpenSCL

	System Control Language (SCL)
	• Lexical elements are the building blocks of the SCL language and are equivalent to the words and punctuation in English. Some definitions:
	• alien-data -> Records delimited by lines starting with ---- and ending with ++++
	• alien-mode-definer -> Identifier starting with SPD
	• any-graphic-character -> The EBCDIC Codeset
	• bip -> built-in procedures – see later

	
	
	• OpenSCL supports ALL the VME SCL language lexical elements and language constructs
	• SCL is a fully functional programming language
	• SCL uses English type commands
	• OpenSCL SCL provides:
	• panoramic conditionals (WHENEVER)
	• easy string manipulation
	• result checking
	• strings and Superstrings
	• ints and rows of ints
	• bools and rows of bools
	• if, goto, while, repeat, whenever, etc
	• all built-in procedures
	• Embedded C code in procedures

	Built-in procedures
	• BIN
	• CHARTOINT
	• CLOCK
	• DIGITS
	• FILL
	• FIND
	• HEX
	• HEXTOCHAR
	• INDEX
	• NUMERIC
	• STATUS
	• STINT
	• SUBSTR

	OpenSCL Enterprise
	• Batch Scheduler
	• Jobs are submitted to queues with varying priorities.
	• The execution of these jobs is controlled by setting concurrencies, for example the scheduler can be set to run only two jobs at any one time.
	• Profiles exist per job so that the execution of jobs can be controlled on a group basis.
	• These jobs are not scheduled on a processor level.
	• The job journal records the results of the job.
	Multiple queues
	• Priorities amongst queues
	• Priorities within queues
	• Queues can be held, expressed, released, etc
	• Entries in queues can be held, released, expressed
	• Executing jobs can be suspended, activated, abandoned, etc
	• Concurrencies can be set
	Note that the Developer version of OpenSCL has the ability to run BATCH work. However the overall concurrency can only be set to one.

	Which calls are supported?
	• Any DLL
	• Any exe
	• Any SCL
	• C, C++, Visual Basic, etc
	• Any WIN API using C embedded in SCL
	• Microfocus Advanced Workbench ints and gnts
	• Microfocus NetExpress gnts and ints
	• COBOL programs compiled into INT or GNT executables can be called by name from an SCL procedure.
	• Parameter passing. SCL variables can be passed to and from COBOL programs. Byte swapping is handled seamlessly by OpenSCL. Calling conventions allowed on VME are also allowed under OpenSCL.
	• COBOL templates. OpenSCL allows a user to specify templates for calling COBOL programs. Specific default values can be assigned to these calls.
	• Error trapping. Run-time exceptions that occur in the COBOL programs are trapped by the OpenSCL run-time and reported to the user in the MAC session and in the job journal.
	• COBOL displays. Output that COBOL programs make to the screen is redirected to the MAC session as well as the job journal.

	Other facilities
	• Reading of any files on homogeneous networks at source
	• Integration with 3rd-party products

	The EBE Computing SCL Generator
	• The OpenSCL Generator with its unique features for generating highly efficient SCL and its associated run-time job restart option ASPRO, is available on all platforms which support OpenSCL

